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Fig. 1. ProxiFit introduces proximity magnetic sensing for holistic weight exercise tracking with only a single commodity
personal device, in two possible configurations: (1) with a single wearable (wrist-worn naturally), or (2) with a single
smartphone (mounted for convenient viewing).
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105:2 « Kim et al.

Although many works bring exercise monitoring to smartphone and smartwatch, inertial sensors used in such systems
require device to be in motion to detect exercises. We introduce ProxiFit, a highly practical on-device exercise monitoring
system capable of classifying and counting exercises even if the device stays still. Utilizing novel proximity sensing of
natural magnetism in exercise equipment, ProxiFit brings (1) a new category of exercise not involving device motion such as
lower-body machine exercise, and (2) a new off-body exercise monitoring mode where a smartphone can be conveniently
viewed in front of the user during workouts. ProxiFit addresses common issues of faint magnetic sensing by choosing
appropriate preprocessing, negating adversarial motion artifacts, and designing a lightweight yet noise-tolerant classifier.
Also, application-specific challenges such as a wide variety of equipment and the impracticality of obtaining large datasets are
overcome by devising a unique yet challenging training policy. We evaluate ProxiFit on up to 10 weight machines (5 lower-
and 5 upper-body) and 4 free-weight exercises, on both wearable and signage mode, with 19 users, at 3 gyms, over 14 months,
and verify robustness against user and weather variations, spatial and rotational device location deviations, and neighboring
machine interference.

CCS Concepts: « Human-centered computing — Ubiquitous computing; Interactive systems and tools; « Hardware —
Sensor applications and deployments.

Additional Key Words and Phrases: exercise monitoring, magnetic sensing, wearable, proximity sensing
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1 INTRODUCTION

With the proliferation of commodity mobiles and wearables, many gym-goers use their devices at gyms for
exercise tracking [1, 2, 6, 7, 22]. Prior researches report that manual logging of health data is burdensome [21]
and thus pervasive fitness tracking should be adopted [116], and gym-goers’ preference are in line with the
claim [22, 120, 125]. Extensive efforts have been put into the pervasive tracking of gym exercises. While approaches
with external instrumentation [47, 72, 114] or custom-built wearables [29, 98, 132] are capable of omniscient
tracking, approaches with personal commodity mobile/wearable such as smartphones or watches have unique
merits: zero hardware investment, gym-independent applicability, and keeping gym-goers’ privacy from third-
party. Commercial apps and research prototypes with smartphones, watches, or other wearables have been
developed. Each work covers a certain subset of gym exercises, to which they offer tracking features such as
exercise classification and repetition counting [16, 120].

Despite the variety, exercise tracking systems with a commodity personal device mainly rely on a common
principle: having inertial measurement units (IMU) — accelerometer and gyroscope — sense the motion of the
exercising body part on which the device is worn. In the real world, this principle poses inherent constraints
such that exercises not moving the body part on which the device is worn cannot be tracked. Each gym exercise
engages specific body parts moving, which may or may not include where the device is worn. Figure 2(a) and (b)
illustrate example exercises that a smartwatch, worn on the left wrist, can and cannot track, respectively. For
brevity, this paper uses ‘M-Exercise’ to denote an exercise where the device M-oves along with the exercising
limbs, and ‘S-Exercise’ to denote an exercise where the device stays S-tationary during exercise. Unless stated
otherwise, we assume the device is a smartwatch worn on the left wrist, i.e., likely the most-sold wearable worn
in the most frequent way. Figure 3 and 4 illustrate the major exercises seen in most gyms, categorized into
S-Exercise and M-Exercise, respectively. Note each exercise’s acronym (e.g., LP for leg press, BT for butterfly,
etc.) in the figures, as they are frequently referred to in the paper.

Our surveys on three local gyms reveal 22 of 60 machines are of S-Exercise, which means 37% of machines in
those gyms (plus free-weight exercises, e.g., dumbbells, on a non-device arm) cannot be supported by conventional
IMU-based systems. Typical approaches try to mitigate the coverage limitation by introducing more sensors to
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different body parts [32, 103, 122, 125, 131] or relocate the device to the exercising body part on-demand [73].
However, such approaches pose practicality concerns as they force the users to frequently change the device
position or buy extra devices.

Another problem is that the concept of inertial sensing diminishes the usability of smartphones - i.e., the most
commodity personal device. The display, a highly advertised feature of modern smartphones, is often integral in
natural user experiences. Direct visibility of the smartphone’s display during workouts can deliver favorable user
experiences (UX), e.g., watching guidance videos or enjoying entertainment content. Numerous guidance videos,
including some produced by exercise equipment manufacturers [46, 51], are created to assist users in performing
effective and safe workouts by helping them maintain correct posture during exercise. Research also reports that
entertainment consumption during workouts can exert a positive psychological impact, or can be useful as a
distraction redirecting attention from difficult demanding exercises [24]. While some exercise machines come
equipped with built-in screens [18], most of them do not, necessitating the separate mounting of smartphones to
the machine to accommodate such visual interaction needs during workouts. Products such as Belkin Fitness
Mount [10] allow users to conveniently attach their smartphones to gym equipment, and are well received in the
market where 644 ratings average to 4.4 of 5 stars. Unfortunately, an armband-a common practice to make a
phone move along exercises, renders the display not in the line-of-sight, taking away its main interface. Not to
mention that S-Exercise is still out of coverage.

In this light, we identify that the following problem is yet to be explored, despite its strong practical merit:

r—[ Problem Statement } <

To develop a weight-exercise tracking system, that satisfies all of the following conditions in favor of

practicality:

(1) supports a holistic coverage of weight machines and free-weight exercises, even if the device is not
in motion along with the exercise, and

(2) requires only a single, commodity, commercial off-the-shelf (COTS) device that most people
own, and

(3) preserves the natural way of using that device, i.e., a watch stays worn on the wrist, a smartphone
display stays in the line-of-sight, and

(4) assumes no external instrumentation, e.g., environment or equipment, to get the system to work.

Device does Device does
not move
not move

(a) Exercises involving device motion (M-Exercise) (b) Exercises not involving device motion (S-Exercise)
(e.g., Shoulder Press (SP) & Biceps Curl (BC) on left arm) (e.g., Leg Press (LP) & Biceps Curl (BC) on right arm)

Fig. 2. An example of different dynamics in two categories of exercise — M-Exercise and S-Exercise, assuming a left-wrist-
worn smartwatch. Notice the yellow smartwatch moves along with the exercise or stays still depending on exercise categories.
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We propose ProxiFit!, an end-to-end weight exercise tracking system that leverages magnetic field sensing in
proximity to gym equipment. Our intuition is that most gym equipment is largely made of ferrous metal — iron or
steel, in the machine structure, weight stack, and free-weight equipment such as dumbbells and barbells. Unlike
conventional IMU approaches, our magnetic approach eliminates the necessity of the device moving along the
exercise motions. A moving mass of ferrous metal disturbs the magnetic field in its vicinity, which is sensible
by a nearby magnetometer that may stay still. This principle enables ProxiFit to support the entire family of
S-Exercise, and thereby satisfy condition (1) in the problem statement. Note that supporting M-Exercise is
straightforward; later we demonstrate two implementations — to co-exist with a conventional IMU pipeline or to
directly apply magnetic sensing to M-Exercise as well.

ProxiFit runs on a single commodity personal device, i.e., either (not both) a smartwatch or a smartphone, using
only its built-in magnetometer, IMUs, and local processing, thereby making ProxiFit satisfy condition (2) in the
problem statement. Figure 3 and 5 depict the two usage modes of ProxiFit. The wearable mode (primarily for a
smartwatch; shown in Figure 3) lets the user keep the watch naturally worn on the preferred-side wrist — no need
to relocate the watch upon changing the exercise type. The signage mode (primarily for a smartphone; shown in
Figure 5) lets the user mount the phone in front of them so that they can naturally see the display while exercising.
Both modes provide real-time exercise classification and repetition counting via auditory feedback [66, 67, 115],
while the signage mode adds visual feedback and even allows other apps to run in the foreground, e.g., YouTube
or a self-monitoring & guidance app [76, 130]. In essence, ProxiFit keeps the natural way of using each device
throughout an entire exercise routine. Also, obviously ProxiFit does not require external instrumentation. This
makes ProxiFit satisfy conditions (3) and (4) in the problem statement. Our supplemental video demonstrates
the real-time operation of ProxiFit at an actual gym in both wearable and signage modes.

Building ProxiFit with high usability and robustness to be deployable in real gyms faces multiple challenges.
First, the magnetic disturbances around unmagnetized iron are extremely weak [37, 88]. In ProxiFit, it is worsened
by the moving parts of a machine being apart from the device, often 0.6+ meter. Weak signals result in highly
inconsistent signatures even for same-path repetitions, as shown in Figure 9. This phenomenon causes many
feature extraction and classification techniques to fail. Another challenge is that the magnetic disturbances
are unique to each machine instance, not to the machine type, as the magnetic signature is engraved at metal
annealing [27, 38, 45]. This rules out typical training strategies — train a general model with a large dataset for
each machine type and apply it everywhere for classification. Instead, the training must be done per every instance
of exercise machines, severely multiplying the training workload. To keep ProxiFit practical, the per-instance
training must be greatly simplified yet still effective.

We present step-by-step development of ProxiFit, turning a commodity device as-is into an in-proximity tracker
for weight exercises, under the harsh challenges of extremely weak magnetic signature and simple-training
constraints. We extensively search for robust, lightweight models that are neither susceptible nor overfit to
weak and erratic magnetic disturbances. Also, we make the overall design of ProxiFit be conditioned to our
unique single-person training policy. For an unseen instance of an exercise machine, the training is quickly
done only with a handful amount of data collected from a few trials performed by a single person, likely the gym
administrator testing a newly installed machine for the first time. Then, the model serves everyone else. Note
that this single-person training is opposite to (and a lot more challenging than) the popular LOOCV (leave one
out cross-validation—trained with N — 1 people and tested to the remaining 1). Below we list our self-defined
terminology frequently referred to throughout this paper.

We implement ProxiFit to be cross-device compatible between an iPhone and an Apple Watch. ProxiFit has
been extensively evaluated with a total of 19 users, at 3 different gyms featuring 5 different brands, on 5 types of
lower-body machines, 4 types of free-weight exercises, and 5 types of upper-body machines, in both wearable

1For demonstration, please watch the supplemental video submitted together with this paper.
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Terminology Description

M- Prefix denoting that the sensor is in motion.

S- Prefix denoting that the sensor stays still.

M-Exercise An exercise involving the motion of the sensor, for a given sensor placement.

S-Exercise An exercise not involving the motion of the sensor, for a given sensor placement.
M-Free-weight A free-weight exercise where the very arm wearing the device is actively exercising.
S-Free-weight A free-weight exercise where the other arm (not wearing the device) is actively exercising.
Single-person training | Our training policy that trains with only 1 person, tests with the remaining N — 1 people.

Table 1. List of wearable exercise tracking systems

Sensor Holistic Works on | Instrumentation | Supports
Ui wilslod placement coverage | single COTS -free S-Exercise
ProxiFit (wearable) Acc+Gyro+Mag Wrist [¢) ¢} [¢] [e)
ProxiFit (signage) Mag Holder Q) ¢} @) ¢}
Chang et al. [32] Acc Hand, waist X X [¢] X
RecoFit [99] Acc+Gyro Arm X [¢) [¢) X
MilLift [120] Acc+Gyro Wrist X [e) O X
Soro et al. [121] Acc+Gyro+Mag Wrist, ankle [0) X O X
Hand, waist,

Velloso et al. [125] Acc+Gyro+Mag arm, dumbbell (@) X X X
MyoGym [80] EMG+Acc+Gyro+Mag Arm X (¢} 0 X
Bian et al. [29] Capacitive coupling Wrist @) X [0) ¢}

ERICA [115] Acc+Gyro Ear, dumbbell [¢) X X X

Acc: Accelerometer, Gyro: Gyroscope, Mag: Magnetometer, EMG: Electromyogram

and signage modes. We rigorously evaluate the robustness of ProxiFit over many dimensions: long-term stability
of magnetic signature, influence from weather conditions or user physiques, possible magnetic interference
between nearby machines, etc.

§2 lays out the backgrounds, taxonomy of prior works, and positioning of ProxiFit. §3 overviews the architecture;
§4 through §7 detail the challenges and experiment-driven development. §8 and §9 shows our implementation
and evaluations. §10 explores extending magnetic sensing towards M-Exercise. §11 discusses open issues.

2 BACKGROUND, RELATED WORKS, AND MOTIVATING EXPERIMENTS
2.1 Demand for Pervasive Exercise Monitoring

Studies report that pervasive tracking of exercise is beneficial as it motivates to lose weight [30, 53, 109],
reduces blood pressure [78], and keeps users more active in general [111]. However, manually logging exercises
is cumbersome and users may forget the details after exercises. Multiple research prototypes accommodate
such needs, and surveys reveal users find such applications to be helpful and prefer using one over manual
logging [64, 68, 84, 120, 125]. Exercise tracking apps such as Gymatic Workout Tracker [16], Garmin [12], and
Coros [11] commercialize long-researched topic on smartwatches and smartphones. Gymatic Workout Tracker
with 1900+ reviews at an average of 4.3/5.0 rating proves its popularity.

2.2 Exercise Monitoring Systems on Wearables

The motion-sensing nature of IMU and wearables make a perfect combination for exercise monitoring [40, 41,
44, 81, 100, 107]. A survey reports strong user preferences toward a wrist-worn device. MiLift [120] is one of
such, implementing the application on a commercial Android smartwatch, and achieving an accuracy of 97.5%
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o)

(h) Biceps Curl (BC-S)

Fig. 3. lllustration of major S-Exercises at typical gyms, for a wrist-worn wearable device. Each exercise is paired with
pictograms depicting its dynamics. Red bounding boxes and arrows indicate the device.

\

(a) Seated Chest Press (SCP)  (b) Shoulder Press (SP) (c) Lat Pull Down (LPD)  (d) Triceps Kickback (TK-M)

(e) Abdominal (4B) (f) Butterfly (BT) (g) Bench Press (BP)  (h) Barbell Squat (BS) (i) Biceps Curl (BC-M)

Fig. 4. Illustration of major M-Exercises at typical gyms, for a wrist-worn wearable device. Red bounding boxes indicate
the device.
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o | n’/

(a) Leg Curl (LC) [:// (b) Leg Extension (LE)

(k) Triceps Kickback (TK-S) r (1) Biceps Curl (BC-S)

Fig. 5. ProxiFit in signage-mode applied to major weight exercises. Red boxes and yellow icons indicate smartphones. Note
that every exercise is treated as S-Exercise here, as the device always stays still.
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Predicted Label Predicted Label
(a) Confusion matrix showing very poor classification accu- (b) Confusion matrix showing perfect classification accuracy
racy (%) of MiLift on S-Exercise (%) of MilLift on M-Exercise

Fig. 6. Verifying a gravity-based approach (MiLift) on lower-body weight machines using a wrist wearable. There exist
machines with similar postures, resulting in poor results. (35.9%)

in classifying 15 weight exercises. Unfortunately, IMU-based systems’ outstanding accuracy applies only to
M-Exercise; they are fundamentally incompatible with S-Exercises as mentioned in §1. One may argue that
IMU-based methods could detect S-Exercises since the user’s wrist may twitch while exerting large force on other
limbs. To verify, we tested MiLift [120] on various exercises including S- and M-Exercises. Figure 6 reveals MiLift
struggles on S-Exercises, in contrast to M-Exercises. We also tested S-Exercises on the Gymatic Workout Tracker
app which can register an unseen exercise by recording 3+ repetitions. This app was unable to register any of
leg curl, leg extension, and leg press — all S-Exercises. Possible alternatives to bring full-body exercise tracking
to wearables are mostly limited to locality sensing. One strategy is to deploy multiple IMU sensors at multiple
limbs [32, 63, 103, 122, 131] and even to dumbbells [125]. However, requiring multiple wearables is financially
unattractive. Another strategy is to relocate the smartwatch to the body position [73] being exercised, which is
inconvenient and against the natural way of wearing a smartwatch. Exotic sensors, such as electromyograph
(EMG) [60, 80, 98], electric skin potentials [77], or textile [23, 132] opened new modality in exercise tracking, but
their sensing scope still remains local; lower-body exercises are not sensible from the wrist. A body capacitance
sensor as a single wrist wearable [29] was developed, bringing full-body exercise tracking. But the consistency of
sensing is low for practical use. Moreover, requiring a non-commodity sensor that most people do not have poses
a fundamental limitation against market share.

Table 1 catalogs wearable exercise monitoring systems based on our practicality conditions (1) through (4) in
§1. Despite novel and multifaceted approaches, a single system satisfying all conditions is yet to be devised.

2.3 Exercise Monitoring Systems on Smartphones

Pernek et al. [110] proposed two ways of enabling a smartphone to track gym machine and free-weight exercises:
putting the phone on the weight stack of the gym machine, or wearing the phone with an armband for free-weight
exercises. Both practices lie on the common principle — making the device move along exercises. Khan et al. [71]
used up to three smartphones attached to the forearm, waist, and thigh to bring full-body exercise tracking.
However, the three-phone requirement makes it less practical. Fu et al. [54, 55] suggested acoustic Doppler
sensing to detect nearby activities. However, susceptibility to multi-paths and background noises in crowded
gyms [128] would limit its deployability at gyms.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 105. Publication date: September 2023.



ProxiFit: Proximity Magnetic Sensing Using a Single Commodity Mobile toward Holistic Weight Exercise Monitoring « 105:9

2.4  Exercise Monitoring Systems by Instrumenting Gyms or Equipment

Instrumenting gyms or equipment has long been a parallel alternative to COTS approaches [20, 65, 106, 108].
W8-Scope [114] instruments the machine’s weight stack with a sensor, making it travel up and down affixed to the
moving weight stack. ERICA [115] takes a hybrid approach using both ‘earable’ and dumbbell-attached sensors.
Other external instrumentation approaches utilize Wi-Fi [56, 126], camera vision [39, 43, 50, 59, 69, 72, 124, 129],
VR [113], RFIDs [47], LiDAR [117], and floor mats [123].

We address that sensing from either infrastructure or user-owned devices is an apple or orange problem. Each
exhibits unique pros and cons in terms of location-dependency, initial investment, beneficiary user pool, and
supported sensing modes. In addition, continuous vision or sound approaches raise privacy concerns. Thus, a
single all-time winner is unlikely. User-owned wearable approaches deserve appreciation for their own merits.

2.5 Magnetic Sensing: Basic Principles and Use Cases

It is known that magnetometer readings exhibit spatially erratic but temporally stable distortions in the vicinity
of iron objects [42, 127]. Ferromagnetic materials such as iron are either magnetically soft or hard. Soft materials
are not magnetized by themselves. But, upon applying external magnetic fields (including geomagnetism), the
electron spins are aligned [101], exhibiting its own magnetic field also known as soft iron distortion. Iron objects’
magnetic properties are largely set at manufacture time; heating and annealing form ‘domains’-tiny regions
with aligned electron spins [45]. The magnetism of neighboring domains may not perfectly cancel out but yield
a non-zero field known as spontaneous magnetization [27, 38], having the object act like an irregular-shaped
group of very weak permanent magnets. As a result, a weight machine or equipment as an iron-rich object
causes combined disturbances where the geomagnetism, machine geometry, and material/manufacture variances
contribute altogether.

Ambient magnetic field sensing based on a commodity mobile device has been studied for real-life problems,
e.g., indoor localization [25, 42, 48, 49, 89, 112, 118, 127], NFC [104], and daily hygiene [62]. MagAttack [37]
and MagHacker [88] address new cyber-physical vulnerabilities that magnetic sensing opens. Instrumenting
an object with a permanent magnet has enabled driver monitoring [61] and natural user interfaces [26, 33—
35, 58, 90, 91, 93, 105].

Among others, Mago [36] senses the periodic spin of vehicles’ wheels to detect the transport mode, which
is relatable to sensing periodic repetitions of unmagnetized iron mass in ProxiFit. Mago shows decomposing
magnetic signals for high-level analysis is infeasible, and opts for intensity-based frequency analysis. We re-
confirm such infeasibility. Furthermore, we find intensity-based features are not reliable enough for ProxiFit to
effectively address its increased complexities — e.g., higher degrees-of-freedom of the weight machine dynamics,
the structural uniqueness of each machine type, and even the instance-unique magnetic signature. §6 devises
new, invariant features to tackle the problem.

3 PROXIFIT SYSTEM OVERVIEW

We introduce ProxiFit, a single commodity device system (either a smartwatch or a smartphone) that newly
enables proximity magnetic sensing to track a holistic family of weight exercises. Utilizing intrinsic magnetism of
iron-rich weight machines & equipment, ProxiFit brings support to S-Exercises, i.e., lower-body weight machines’
and ‘free-weight lifting by a non-device-worn arm’. To our knowledge, this has not been supported by a single,
naturally-worn, commodity COTS wearable, as detailed in §2 and the problem statement in §1. ProxiFit also
premieres the signage mode (Figure 5)- letting the device off-body to offer a natural line-of-sight on the phone’s
display while exercising.

ProxiFit is highly practical; it is widely deployable, user-friendly, and of little cost. ProxiFit uses only a single,
user-owned, unmodified commodity device, e.g., a phone or a watch, and works in uninstrumented gyms.
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Specifically, (1) ProxiFit works from day 1 for anyone without per-user training. (2) It lets the device be naturally
worn on the wrist or naturally in front of the user. (3) It works automatically through the user’s entire gym
routine — entering a gym, sitting on a machine, performing repetitions, taking a break, doing a different exercise,
walking around, etc.

3.1 ProxiFit Architecture

External ” IMU-based exercise tracker i t
X - or  *M-ProxiFit | exercise segment, |
Implementation | e.g. Milift [79] L B - class, reps
ep=¢ ) * For detailed explanation abt;ut M-ProxiFit, please refer to §10.
/- PrOXIFIt Magnetometer \
1{4_._i_é_._._._._.7 ................... 3 !
! : ! ...

RIS No — principle { - support | EXERCISE

- 1 ype
1 Q) Wearable Component | - Vector CLASSIFIER
N ! T L Analysis Machine

Cancelling = Normalized
Ma'gnetometer device magnetometer
1 f_./iéc_e.l,_(.a\_/l;o_ """" L """"""" rotations -
[ B | ontinuous - REPETITION
\ D Signage | Exercise? Wavelet Heuristic m) repetiti
1 i xercise? petitions
(I S ' —| Transform | P2k Counter COUNTER
WORKOUT FRAME
\ DETECTOR NORMALIZER s = Control Path --» --» - Data Path ‘ /

Fig. 7. ProxiFit System Architecture illustrating major components. Solid lines represent control paths; dashed/dotted lines
represent data paths with the annotations of which sensor data flows along.

Figure 7 illustrates the overall architecture (best viewed in color). The control paths and data paths are separately
shown. The processing paths are partially different depending on wearable or signage mode, and extend to an
external delegate module such as MiLift [120] or M-ProxiFit (see §10) for processing of conventional M-Exercises.
On a single device (either a watch or a phone), ProxiFit senses from magnetometer, accelerometer, and gyroscope.
We apply a sliding window on the sensor streams to process the data. Our exercise data reveals single repetition
can take 0.8 to 2 seconds. A larger window size, due to more samples, typically results in better accuracy at the
cost of more computation and delayed response. We choose a 3-sec window (at a stride of 0.5-sec) to make sure
at least a single whole repetition is captured while reducing the latency. The accelerometer and gyroscope are
used for preprocessing and filtering; exercise classification is done solely using the magnetometer.

In the wearable mode, the workout detector employs accel- and gyro-based thresholding to determine if the
current sensor streams fall in S-Exercise. Non-S-Exercise is passed to the external module, which determines
whether it is M-Exercise or not an exercise at all. In the signage mode, inertial features are not informative as the
device always stays still. Thus, thresholding is replaced with a decision tree classifier with autocorrelation. §4
details the workout detector.

Detected sensor streams of workouts go through the frame normalizer, which transforms the sensor data into
a constant external frame of reference in real-time. This is necessary to nullify the magnetic artifacts due to
slightly different device poses or user physiques. §5 elaborates on the frame normalizer.

The exercise classifier classifies the current exercise into a known type. It has two pre-trained models, for
wearable and signage modes, respectively. §6 explains the classifier, along with our feature set and single-person
training policy.

The repetition counter takes magnetic sensor data, and inspects frequency-domain features over a continuous
time with continuous wavelet transform (CWT) to distill periodic trends out of the faint magnetic disturbances.
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Finally, repetition is counted in real-time by peak counting on the frequency feature with the most consistent
repetitions. Unlike the classifier, the repetition counter has only a single instance that serves all usage modes and
exercise categories; there are no case-dependent hyperparameters. §7 explains our design of repetition counter.

3.2 Datasets

Table 2. Summary of datasets

. . . . No. of Participant ~ Participant ~ Exercise  Participant Total
Mode (device) | Dataset Location Exercise categories participants height (cm) weight (kg) weight (kg) age duration (h)
Upper {SCP, SP, LPD, BT, AB}
Dy Gymyniv  Lower {LC, LE, LP} 15 162-185 53-100 4.4-80 22-31 21.4
Vz’esgizl)e Free-weight {BS, BP, BC, TK}
P D, Gymgyga Lower {SLC, LE, LP, ADD, ABD} 9 169-180 56-95 5-55 24-31 11.6
Ds Gymgxp Lower {LC, LE, LP} 5 169-180 70-95 15-40 25-31 4.9
Signage
(phone) Dy Gymyniy  Same as Dy 9 162-181 53-95 2.2-30 23-31 8.9
Wearable Ds Gymuniv  Upper {SCP, SP, LPD, BT, AB} 6 169-181 70-95 5-30 25-31 2.5
(watch) D Gymgxa Lower {SLC, LE, LP, ADD, ABD} 5 169-180 70-95 5-25 25-31 5.9

We summarize the exercise datasets to which are referred along with the design and evaluation process. Table 2
lists 6 datasets: D; through Ds. The whole datasets involve a total of 19 users (2 F & 17 M), at 3 different gyms,
over 14 months period, both wearable and signage modes, covering 14 exercise types including lower-body
machines, upper-body machines, and free weights. The gyms are chosen to diversify the exercise equipment’s
brands to ensure the datasets’ generality. In each dataset, each participant performed 10 sessions per exercise
type in that dataset. (1 session = 10 repetitions) Some datasets are small in size to abide by the access regulation
as per the COVID situation. In every data collection, we kept the gym environment as-is while allowing subjects
to freely plan their exercises — the order of exercise, machine adjustments, weight, and pace. Note that Gymgxa
and Gymgyp are public gyms; data is collected during business hours under interference from other users. The
following sensor streams were collected at 100 Hz: magnetometer, accelerometer, gyroscope, and attitude (device
orientation) through iOS’s CoreMotion APIs. We video-recorded every data collection for labeling ground truths.
All experiments were conducted under IRB approval.

The sensor data were collected from either an iPhone 12 Pro or an Apple Watch Series 6. For the signage mode,
we collected the data only from the phone (D), as the display size would matter to ensure natural, comfortable
viewing in signage mode. For the wearable mode, we have three datasets from a phone (9, through D;) and two
datasets from a watch (D5 & Ds). In D; through Ds, the phone was strapped on the user’s wrist so that it can
sense in the same pose as a watch, as shown in Figure 3(a)-(f) and also in our supplemental video submission.

The reason for using a phone to mimic a watch is due to Apple’s aggressive scheduling in watchOS; it
suspends background workout tracking depending on CPU usage [17]. We observed our sensing app being
abruptly killed in the middle of exercise sessions, making continuous data collection very unreliable. For this
reason, we collected most large-sized datasets from the phone being worn like a watch. From the watch, we
managed to collect two usable datasets (Ds & D) which are smaller in size and coverage. We use Ds and Dy
to demonstrate ProxiFit is seamlessly usable with a watch, verifying our system is not biased to the phone. We
clarify that this is not a technical shortcoming in a fundamental sense, but rather Apple’s proprietary policy; it
could be resolved once Apple lifts the bar.

3 different gyms are covered in our datasets to demonstrate ProxiFit’s cross-gym portability. Gymypiy is our
university gym; Gymgyxa and Gymexp are two external gyms, respectively. Each gym has different brands of
weight machines: ‘Matrix’ and ‘Lexco’ in Gymypiy, ‘Dynaforce’ and ‘Life Fitness’ in Gymgyia, ‘Newtech’ in Gymeys,
supporting ProxiFit’s generalizability to machine variety. The external gyms were far more crowded than Gymyy;y,
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Table 3. SNR analysis on 6 types of S-Exercises. Parenthesized ranges indicate (min, max).

LC LE LP ABD ADD SLC
97.30 38.98 34.92 73.38 38.17 50.93
Idle state DC offset (uT) (94.21-99.00) | (35.99-41.28) | (33.52-36.00) | (41.77-108.50) | (28.41-48.64) | (48.83-54.35)
AC intensity (‘noise’) 0.35 0.31 0.34 0.35 0.31 0.33
(uT) (031-0.39) | (0.28-0.33) | (0.30-0.37) | (0.29-0.46) | (0.28-0.33) | (0.29-0.37)
. Envelope amplitude in a 0.65 0.41 1.23 1.93 0.96 0.58
S-Exercise single repetition (‘signal’) (uT)| (0.48-0.93) | (0.36-0.48) | (1.08-1.53) | (1.55-2.36) | (0.85-1.07) | (0.42-0.90)
being 5.09 2.48 11.01 15.33 10.10 4.69
performed SNR (dB) (255-7.97) | (0.91-4.82) | (9.53-14.19) | (13.76-17.36) | (8.23-11.64) | (2.12-8.11)

reflecting more real factors. To make the best use of fewer data collection chances from regular business hours
of Gymgya and Gymgys, we focused on their lower-body machines, because: (1) Gymgxa & Gymgxp owned a
more variety of lower-body machines (5 & 4 types, respectively) compared to Gymyniy (3 types); Figure 3(b), (e),
(f) are the lower-body machines unique to Gymgya. (2) the lower-body machines are one of our unique addition
to the relevant literature.

4 WORKOUT DETECTOR

To make ProxiFit intervention-free, it should auto-detect active exercise sessions along the user’s natural gym
routine. The workout detector is the only component that runs for an entire routine, strongly favoring a lightweight
detector [82, 83].

Detecting a target segment out of a continuous signal is often done by searching for some characteristic signa-
tures. Unfortunately, S-Exercises rarely leave useful acceleration signatures as showcased in §2.2. Magnetometers,
although capturing more information than accelerometers, either could not be a drop-in replacement due to
inherent limitations.

Profiling ambient magnetic disturbances from S-Exercise. Table 3 lists our measurements from the wrist-
worn device of the user performing 6 types of S-Exercises. Firstly, the table breaks the idle-state ambient magnetic
field into the DC offset (largely geomagnetism) and the AC intensity (considered ‘noise’). The idle-state indicates
the user holding the handle still but not performing repetitions. Next, we measure the envelope amplitude
that the ambient magnetic field swings during a single repetition period (considered ‘signal’), and calculate the
signal-to-noise ratio (SNR). We report the mean values along with the min-max ranges, from 20 measurements
per machine. As the magnetic field is a 3-D vector quantity, we take the L2-norms and average them to represent
the mean levels of noise and signal. The mean SNR ranges from 2.48 dB to 15.33 dB, depending on the machine
type. Also, we need to ensure that the sensor precision is good enough to detect signals at such amplitudes.
Although the magnetometer model on iPhone 12 Pro is not publicly known, we make an educated guess based
on the reports: (1) iPhone 6s has the magnetometer model of HSCDTD007 with 0.15 uT precision, made by
ALPS [36], (2) all iPhones from 6s through 8 plus use a magnetometer from ALPS [92], (3) iPhone 13 pro has
ALPS HSCDTDO00xA series magnetometer [5], and (4) ALPS currently lists only one geomagnetic sensor product
(HSCDTDO008A) [9, 13] of 0.15 uT precision. Given the consistent 0.15 uT precision of the magnetometer product
family in iPhone models preceding and succeeding iPhone 12 pro, we speculate that iPhone 12 pro’s magnetometer
precision is likely 0.15 uT, too. It is unlikely a serious issue given the signals’ scales in Table 3.

Detecting S-Exercises. Despite the positive SNR, the challenge to detect the presence of an S-Exercise is that
magnetometer readings are a combination of ambient magnetic field variation and sensor displacement. Sadly, the
impact of sensor displacement (e.g., the user naturally moves) is not negligible compared to repetition-induced

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 105. Publication date: September 2023.



ProxiFit: Proximity Magnetic Sensing Using a Single Commodity Mobile toward Holistic Weight Exercise Monitoring « 105:13

B True Positive | | | —— | — | |

W False Positive | | [ ] [/ S | | |

W False Negative | | I — [ ] I — |
D True Negative 0 10 20 30 40 50 60 70 80 (s)

Fig. 8. Detailed view of detected S-Exercise segments along a part of continuous gym routines

field variations. E.g., rotating the device by 10° may see a difference as big as 3 uT under a 45 uT offset of the
ambient magnetic field.

We take a reverse way that removes unlikely ones instead of finding the repetition-likely. Humans are intolerable
to absolute settlement, moving slightly without intent [79]. We note that a user’s wrist stays unnaturally still
during S-Exercises, to firmly hold the handles or rest on the body in order to properly exert force. In favor of
unnaturally still window slices, we set upper-limits to the RMS power of acceleration and rotation rates whereas
others are early-rejected. In 9y this removes 99.7% of non-S-Exercises in a 250-min period and with only 2.7% of
false-negatives.

There is a possibility that the device stays stationary but the user is not doing S-Exercises. To prevent such
false-positives, ProxiFit necessitates detecting a minimum of three repetitions via the repetition counter before it
acknowledges the signal as an exercise, preventing random noise from being detected as an exercise. §7 also
elaborates on this filtering.

Analyzing in-situ detection performance. Figure 8 visualizes part of the segmentation results along continuous
gym routines containing 3 sessions of 3 different machines and non-exercise movements. Most FPs/FNs appear at
either edge of true exercise sessions. To further remove short FP/FNs, we exploit that an exercise session typically
consists of 7-15 repetitions. To balance between confidence and responsiveness, we empirically choose 3 samples
(1.5 sec).

5 FRAME NORMALIZER

For S-Exercises and signage mode, an exercise-eligible window has to be normalized per its frame of reference
to rectify user and instance variations. The frame normalizer corrects deviations by transforming each sample
based on its frame of reference, and saves it to a session buffer for the following classifier and repetition counter.

In lower-body machines, the handles force the user’s hands to stay in a certain pose, confining the sensing
device in a tiny space. A grip is about 13 cm long, and the average hand of adult males is 8.3 cm wide [119],
leaving 4.7 cm of freedom which is negligible considering gym machines of at least 50 cm travel per repetition.
However, the rotation of devices is not fully controlled: (1) The anatomy of human wrist cross section allow a
watch to be rotated by up to [-30°,+30°] [87]. (2) Different physiques in arm lengths and shoulder widths lead
users to grip the handles at dissimilar angles. (3) Slight unconscious wriggles may happen upon exerting force.

Consequently, compensating for the subtle device rotations is crucial for sample consistency and model
stability. Frame normalizer cancels unintentional rotations by utilizing relative rotations derived from the device
attitude. Every reference frame supported in Apple API sets the Z-axis to parallel the gravity. While it also
supports aligning the X-axis towards the north pole, it is estimated with the magnetometer. ProxiFit is put under
a magnetically dynamic situation which may confuse the estimated orientation. Hence the frame normalizer is
not applied on the Z-axis to avoid false corrections.

6 EXERCISE CLASSIFIER

While we have explored various advanced methods to classify exercises with ambient magnetic signals, ProxiFit
settles for a rather simple Support Vector Machine (SVM) (radial basis functions kernel (RBF) & C = 70 (wearable)
/ C =10 (signage)) with the following 4 features: {Normalized & Raw principal component vector of magnetic
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signal, and Normalized & Raw principal component vector of element-wise difference magnetic signal}. In this
section, we show our choices outperform others even with training on a few single-person repetition sets per
exercise type.

We first focus on the wearable mode in exploring the classifiers. Then, we show the same architecture and
training policies are seamlessly applied in signage mode (where every exercise is an S-Exercise). Unless specified,
the accuracy hereafter is obtained with single-person training, i.e., “train on only one person’s data, test on everyone
else, and average the accuracy over N choices of the training person.” This is opposite to and much harsher than
‘leave one out cross validation (LOOCV)’, but crucial to fight the instance-unique magnetic disturbances and
thereby ensure the practicality. §6.1 articulates candidate classifiers and features we tested. Then, §6.2 and §6.3
present the strategy that we settled in.

6.1 Classifier and Feature Search Attempt

Deep neural networks demand large data. Our key challenge is to increase selectivity high enough to classify
machines despite SNR as low as 0.91dB. Denoising approaches, which train models with ground truth and noisy
counterpart, are inapplicable because (1) the ground truths of higher SNR are not obtainable, and (2) synthetic
ground truths are infeasible as the magnetic disturbances are instance-unique, solidified at manufacture time.
Another option is to design an end-to-end network and delegate both feature-finding and classification. It increases
problem space compared to denoising and thus requires a far more extensive dataset. Unfortunately, growing
datasets is against practicality in ProxiFit due to the instance-wise magnetic specificity and the single-person
training policy.

We experimented with 1-D CNN [57] and LSTM [102] which are well-recognized in wearable HAR. The 1-D
CNN tops at 67.1% even under traditional 8:2 train-test split, not our single-person training. The LSTM achieved
82.8% under the same 8:2 split. Under our single-person training, the accuracy heavily fluctuates around 70% and
drops below 50%. We believe that our problem with minimal per-instance training constraint is not favored by
data-hungry deep learning.

Computation cost is also important when it comes to a smartwatch app. We tested the battery consumption of
LSTM and SVM(rbf) on iPhone 12 Pro. We forced LSTM to run on CPU, as processors in smartwatches do not
have deep learning accelerators. After a 60-min classifier run, SVM used 2%p battery while LSTM used 12%p
battery. While this battery consumption on a smartphone might seem acceptable, iPhone 12 Pro (10.78 Wh) [4]
has a 10x battery of Apple Watch 6 (1.02 Wh) [3]. Thus, running LSTM on smartwatches would severely hamper
daily usability.

High noise prevents signature matching. We explored parametric and non-parametric approaches to find
closer matches to prerecorded signatures. For parametric, Gaussian Mixture Model marked only 40.5%. For
non-parametric, we constructed sample distributions per exercise type, and applied Kolmogorov-Smirnov (KS)
test to quantify the similarity of each type. The accuracy was only 15.7%. Figure 9 visualizes 3-D magnetic field
trajectory from five repetitions of hip abduction. The plot reveals significant inter-repetition deviations and drifts
albeit smoothing. Both results and visual inspection of the signal hint that the distributions across repetitions
and sessions are too erratic.

Inflexible statistical features. Now we explore classic feature engineering. We tried popular statistical features -
mean, stddev, kurtosis, skewness, interquartile range (IQR), and well-known classifiers — Random Forest, Decision
Tree, Naive Bayes, Support Vector Machines (SVMs) with linear and RBF kernels. At first, we searched for the
best feature combination on three lower-body machines {Leg curl, Leg extension, and Leg press}. We find SVM
with RBF kernel performs the best, and {mean, IQR} are the most reliable feature combination that marks 81%. We
searched the best-performing hyperparameter C from [0.1, 100] range, and kept gamma as ’scale’ which is the
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Fig. 9. Raw magnetometer trajectory of five hip abduction Fig. 10. Each plot visualizes exercise repetitions and their
repetitions, each visualized with its respective primary com- primary component vectors. Primary component vectors are
ponent vector. The vector directions are consistent, despite consistent in the same exercise type, but distinguishable
drifts and inconsistency across repetitions. with other exercise types.

default for scikit-learn. However, adding two more lower-body machines {Hip abduction, Hip adduction}, lowered
the accuracy to 65%.

6.2 Principal Component Analysis

Given all inconsistency against stable classification, we focused on distilling the invariant across repetitions,
sessions, and users, and eliminating everything varies. For S-Exercises, we observe that: (a) The magnetism of
a machine instance is set at manufacture time. (b) Topological relationship between the moving parts and the
handle is constant. (c) Moving parts of a machine follow the same trajectory. (d) But their traveling distance
depends on the user’s physique. (e) Their traveling speed depends on the user’s pace. (f) The amount of moving
weight stack depends on the user’s choice.

From a stationary magnetometer, its surrounding magnetic field travels as the user performs a repetition.
Across different users or weights that may result in (d) - (f), the vector field around the magnetometer may differ.
Still, the traveling direction of the surrounding field is consistent for the same machine. To represent the field’s
traveling direction in a user- and weight-invariant way, we apply principal component analysis (PCA) on the unit
vectors of magnetic field samples. Figure 10 shows primary PCA vectors from multiple repetitions for 4 types of
exercise. Despite the erratic raw trajectories, the PCA vectors are consistent across the same-exercise repetitions,
and distinct across different exercises. Initially, the classifier took all 3 components as input. In-depth inspection
discloses that only the primary component suffices, achieving an accuracy of 79.3% using SVM (rbf, C=20). To
further elaborate the feature set, the non-normalized principal component vector (i.e., multiplied by its variance)
is included in the feature set, to inject how prominent the primary component is compared to the secondary or
ternary ones. With two 3-D vectors, the classifier achieved 94.9% on three exercises, and generalizes well to five
exercises with 86.2% accuracy.

While the directionality of the signal itself is proven to be reliable and informative, we also find the delta of the
directionality to be helpful. Adding both normalized and non-normalized principal components of element-wise
difference of raw signal to the feature set, and finally tuning the SVM’s hyperparameters C to be 70 (wearable) &
10 (signage), we marked 97.2% accuracy on three exercises, and 94.0% on five exercises.
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Fig. 11. t-SNE plot for features of 12 signage exercises
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6.3 Majority Voting

So far, we reported the classification accuracy on a per-window basis (3-sec-long, similar to a typical repetition),
which is sensitive to outlying repetitions; users may see momentary misclassifications during a session. The
nature of weight exercises dictates only one exercise type exists during a session — the machine that the user is
on. Thus we apply continuous majority voting, which hides the momentary misclassifications and improves the
user-perceived accuracy. Figure 11a is a t-SNE plot of our feature vectors on 12 signage exercises, illustrating our
features are mostly well-distinguished between exercises. But some outliers exist, as highlighted in Figure 11b.
Further analysis reveals they are minority windows during a single exercise session, impacting per-window
accuracy. The majority voting effectively filters them out. Figure 12 describes accuracy after majority voting,
where the combined accuracy is 99.7%.

7 REPETITION COUNTER

ProxiFit counts the exercise repetitions in real-time, in parallel with the classification as shown in Figure 7. The
repetition counter is independent from the classifier; the real-time counting is not delayed by the classifier’s
post-processing.

We labeled repetitions in 20 randomly sampled workout sessions of 9; for the ground truths. The repetition
counter examines only the primary component as noise overwhelms the information gain at the 2nd+ PCA
components. Still, the signals exhibit nontrivial low-frequency fluctuations and high-frequency noise, as shown
in Figure 13a. Frequency domain filters are of limited usage here. Repetitions are rather at a low frequency,
around 0.3 Hz, which interferes with slow ambient fluctuations. A high-order filter may sharply separate both
but introduces a delay in counting.
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Fig. 13. Continuous wavelet transform (CWT) of signal and its analysis. Red or green vertical lines denote ground truth
repetitions.

We empirically choose a 2nd-order highpass Butterworth at 0.2 Hz for a balance between noise rejection and
saving the signals. Figure 13b shows the signals after filtering. Despite cleansing, systematic repetition counting
is still unreliable. Peak counting turned out to be heavily parametric to the ground truth samples. Having it fit on
20 sample sessions gives a high average error of 5.56 reps per 10-rep session when evaluated on the entirety of
1)1.

To design a counter that adapts to user variation, we apply continuous wavelet packet transform (CWT) to the
target signals. Figure 13d reveals the importance of choosing a proper scale (i.e., y-axis). Rough estimations of
repetitiveness in a given CWT could be to find two red droplets per repetition. Our repetition counter dynamically
finds the best scale for each segment by counting peaks over a plausible scale range, and choosing the most
regular-paced one.

We set the automatic scale search range as [0.25, 2] Hz (at 0.25 increment), based on our statistics that a single
repetition takes 0.8 to 2 seconds. As an example, Figure 13e illustrates the cross-sections at three different scales
on Figure 13d - 1.25, 1.5, and 1.75 Hz. Here, 1.25 Hz shows a couple of false peaks, and 1.5 Hz shows a single false
peak at the last repetition. Our algorithm chooses 1.75 Hz as it exhibits the least normalized variance (0.51) of
peak intervals. Indeed, we can confirm 1.75 Hz is free of false peaks. Overall, evaluation on S-Exercises in D,
reports accurate counts at a much lower average error of 1.22 rep per 10-rep session despite faint, irregular signal.

Sometimes, an arbitrary segment may be detected as a workout despite users not exercising. One such plausible
scenario is when the user is holding the handle firmly, but not exercising yet. Upon such a false-positive segment
passing the workout detector, the classifier may make a false guess. To mitigate it, the repetition counter also
functions as a gatekeeper for exercise registration, rejecting false-positive segments that do not include at least
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three consecutive repetitions. Figure 13c visualizes such signals. Unlike Figure 13b and 13d, the signal is mainly
of high-frequency noise. No periodic signature is detected at a low CWT scale level, thus not counting repetitions
and preventing a false segment.

8 IMPLEMENTATION

We implemented a ProxiFit prototype in Swift on an iPhone 12 Pro on iOS 15.1 and an Apple Watch Series
6 on watchOS 8.3. While ProxiFit is portable across iPhone and Apple Watch, we mainly used smartphones
for major long-running wearable mode experiments due to the aforementioned scheduling limitations, which
are not fundamental limitations but a policy set by Apple. Instead, we justify appropriating a smartphone as a
smartwatch with short running experiments (§3.2). Signage mode used the phone version as it ensures natural
and comfortable viewing.

ProxiFit adopts efficient programming strategies for battery-saving. Sensor values are saved to a circular queue,
buffered segments are reused to construct overlapping windows avoiding unnecessary memcopies, and basic
statistics are computed on-the-fly. For compute-intensive SVM and CWT, efficient C implementations [19, 31]
are linked to Swift, and we use AlToolBox [8] to further accelerate PCA with vDSP vector instructions. We
also included an implementation of MiLift [120] to demonstrate ProxiFit can be integrated with other exercise
tracking systems to support M-Exercises.

9 EXPERIMENT

From §4 through §7 we discussed module-wise metrics. To assess the deployability of ProxiFit in real gyms,
evaluating under various reality factors is imperative. This section presents our evaluations to answer the
following questions:

e End-to-end (§9.1) : autonomous operation in a gym e Robustness ((§9.6) against:

routine. — Weather-borne variations (e.g., humidity, lightning).
e Signage (§9.2) : performances in all 3 exercise categories. — User-dependent variations (e.g., physique, pace).
e Watch (§9.3) : seamless operation with a watch wearable. - Spatial displacement in free-weight.
e Portability to other gyms (§9.4), of: - Spatial displacement / rotational tilt in machines.
— System and hyperparameters (model retrained per - Magnetic interference between adjacent machines.
gym). — Magnetic interference around machines.
— Trained model upon same-type machines in other - Longitudinal aging of intrinsic magnetism.
gyms. - Using different dumbbells in free-weight.

e Runtime (§9.7) : workload and resource consumption.

9.1 Through an End-to-end Gym Routine

We assess the realistic usability of ProxiFit along the users’ natural gym routine - lifting multiple weight machines
one after another as well as taking breaks in between. We recruited 10 users. Each user stayed for an average of
18 minutes at the gym. Due to the COVID restrictions, we were not allowed to keep them much longer. Although
shorter than typical gym routines, we believe the results would be generalizable to a longer stay.

During their stay, each user was asked to naturally do exercise on a total of 14 weight exercises (5 lower-
and 5 upper-body machines, 2 barbell free-weight exercises, plus two dumbbell free-weight exercises which are
counted twice as M-Free-weight and S-Free-weight depending on which arm the exercise is done), one after
another. Each user performed a 10-rep session on each exercise. We let them do freely between sessions, e.g.,
taking a rest, walking around, doing chit-chats. The gym-routine data on which we assess ProxiFit includes all of
these uncontrolled activities.
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Fig. 14. Confusion matrix of end-to-end exercise classifications along natural gym routines (avg. 93.1%)

Figure 14 shows the end-to-end classification results on 11.6 hours of data. The average counting error is
0.77 reps per 10-rep session, which is even better than the 1.22 reps error seen in §7. Our supplemental video
demonstrates a user’s continuous gym routine where ProxiFit seamlessly determines workouts and non-workouts,
classifies the right exercise type, and counts the repetitions in real-time, without any user intervention along the
entire gym routine.

9.2 Signage Mode Performances

As pitched in §1, we newly present the signage mode — placing the sensing smartphone at an off-body, line-of-
sight location so that the user can watch the visual contents while the proximity magnetic sensing monitors the
exercise.

We evaluate the signage mode in all 3 categories. Figure 5 shows how the phone was mounted at each exercise.
For lower-body & upper-body machines, the phone is gripped by a holder anchored to the machine. For free-
weights, the phone holder is anchored to a separate stand. We let each user freely adjust the phone’s position
so that they can view the screen comfortably while lifting weights. If commercially deployed, the machine
manufacturer or the gym owner could affix a permanent holder at a convenient location. We want to emphasize
that this is a likely assumption reflecting the real market, considering the high demand for smartphone holders
for gym use [10, 15], as explained in §1.

Dy in Table 2 is collected from the signage mode. With 9 users and the single-person training, Figure 15 shows
the average classification results, which are perfect except for single-arm free weights. The average counting
error is 0.69 rep per 10-rep session. In signage mode, single-arm free-weights are always S-Exercises regardless
of sidedness. Thus, distinguishing the arm’s sidedness is more challenging, as Figure 15a show on BC-L, BC-R,
TK-L, TK-R. (-L & -R denote left & right arm, respectively.) If we consider sidedness-agnostic signage, Figure 15b
shows perfect classification.

We verify that signage mode is highly reliable across many popular exercise types covering most categories of
weight exercises. Having signage as an underlying sensing layer, rich visual interfaces (e.g., a virtual coach or
video player) could be built upon it, opening unique interactions to the COTS device-based pervasive weight
exercise tracking.
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9.3 Wearable Mode with a Watch

To verify iPhone is a good representative of Apple Watch, we have ProxiFit single-person-trained from 9, (col-
lected from an iPhone), and test them onto D5 and Dy collected from an Apple Watch. Figure 16 showcases the
accuracy for 5 lower- and 5 upper-body weight machines. SCP, SP, LPD, BT, and AB are upper-body weight
machines (full names in Figure 4) and thereby M-Exercises for a watch worn on the wrist. These are supported
by incorporating M-ProxiFit explained in §10. They demonstrate that our system is usable with either device
interchangeably, not specifically biased to the phone. We clarify that s and D, are inevitably small due to
Apple’s proprietary preemption policy hampering continuous sensing over a long period on an Apple Watch, as
discussed in §3.2 and §8.

9.4 Portability to Other Gyms

Most experiments so far have been done at our university gym, Gymyniy. Now we extend to different gyms -
Gymgxa and Gymexp. We examine ProxiFit’s across-gym portability under two different conditions.

9.4.1  Unmodified architecture & hyperparameters but retrained model. Firstly, we deploy the unmodified ProxiFit
architecture and hyperparameters (i.e., window size and overlap) to different gyms. But we retrain the classifier
for the new gym, under the single-person training policy. ProxiFit loads the gym-specific model at runtime, by
applying a Pol-level localization technique [74, 75, 85]. This is our default premise of how to deploy ProxiFit at
an unseen gym on Day 1. Although D; from Gymyy;y that granted us exclusive slots for experiments, Gymgxia
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Table 4. Classification results between neighboring machines (Eleven sessions per each combination)

L. Machine where
Machine in use . ..
classification is done
Leg Curl Leg Extension Leg Curl [ Leg Extension
Active Idle Leg Curl Not detected
Idle Active Not detected Leg Extension
Active Active Leg Curl Leg Extension

and Gymgyg did not - they were open to the public and machines were occupied most time. So, D, and D3 are
smaller. Moreover, these gyms are more challenging to ProxiFit as they are crowded, and thus inter-machine
interference is pervasive.

Figure 17a shows the average accuracy of 97.6% and 98.0% after deploying the system and hyperparameters
as-is, while retraining the model, to Gymgxa and Gymgys, respectively. The original accuracy at Gymyyiy Was
97.2%. The repetition counter reports an average error of 0.48 and 0.84 rep per 10-rep session, from a total of 566
sessions. These results verify that ProxiFit is portable to unseen gyms and machines without changing its logic or
hyperparameters.

9.4.2  Unmodified architecture & hyperparameters & model. Next, we explore beyond our default premise. We
deploy everything unmodified to different gyms, without retraining the classifiers. The literature of soft-iron
distortions and spontaneous magnetization in §2.5 teaches that, in theory, a model trained for specific weight
machine instances is not directly portable to another gym; same-type machine pairs between two gyms are still
different instances.

The leg press and leg extension of the three gyms share the same mechanical dynamics despite different
brands. By applying a model pre-trained for Gymuyy;y, as-is to Gymexa and Gymexs, Figure 17b shows a modest
accuracy drop of 0.6%p-17.9%p for each same-type machine, except a 71%p drop for the seated leg curl (SLC) in
Gymgya. This excessive drop is due to SLC’s large structural difference from the lying leg curl (LC) (in Gymypiy
and Gymgyp), as seen in Figure 3(a) and (b). The takeaways from these experiments are: (1) Models perform best
when trained per instance & per gym. (2) Yet the trained model is partially portable to a same-type machine at
another gym, at a modest accuracy drop as long as the machine is of a similar structure. (3) This observation sheds
light on the graceful bootstrapping of a newly brought machine or equipment, where its own instance-specific
training is not immediately doable.

9.5 Effectiveness of Incremental Learning

So far, we focused on bootstrapping ProxiFit in a brand-new gym under single-person training constraint. Once
bootstrapped, unlabeled data will accumulate as many users exercise with ProxiFit. We test semi-supervised
learning to incrementally improve the model on-the-fly. Specifically, we take new exercise samples conditionally
with a confidence threshold on the predictions from single-person trained SVM. Then we train both SVM and
LSTM by one iteration using the predicted labels presumed to be true. Figure 18 depicts the incremental growth
of both models along with newly incoming users, followed by a plateau. The results are averaged over multiple
permutations of the ordering of incoming users. The data-hungry LSTM starts lower. As new users come in,
LSTM’s accuracy grows faster, narrowing the accuracy gap to the SVM. Still, a ‘crossover’ did not happen; rather
the plateaus are formed before closing the gap.
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for ten 10-repetition sets.

9.6 Robustness of ProxiFit

9.6.1 Magnetic interference between adjacent machines. In a real gym, many people exercise simultaneously. One
may worry about magnetic interference when neighboring machines are in use [85, 86]. We tested with two users
exercising on adjacent machines, as shown in Figure 20. For space-saving, we detail a particular pair of machines
- leg extension (LE) and leg curl (LC). This pair is chosen for showcasing because their inter-machine spacing is
the shortest (43 cm) out of all adjacent machines in our gym, and thereby their inter-machine interference should
be the strongest. Note that this spacing is even smaller than the legal minimum-at least 76.2 x 121.92 cm for
wheelchair clearance [14].

Eleven sessions per each simultaneous exercise combination in both wearable and signage modes, we still
observed no erroneous classification. Figure 4 summarizes experiment setups and results. In short, remote
interference did not hinder local exercise detection, and there was no false-positive even if the user is holding the
handle steadily without exercise.

To explain the anti-interference robustness showcased above, we point out that our PCA-driven features reflect
the device’s specific location and posture upon the user correctly gripping the handle of the target machine.
Simply being close enough to a machine does not necessarily produce a false-positive label. To re-confirm this claim,
we profiled the surrounding area around the leg extension machine for ten 10-repetition sets per each location.
Figure 19 demonstrates simplified diagram of leg extension, the sampled locations, average amplitude of magnetic
field disturbances at given locations, and classification results. Note that the sampled locations are of various
distances to the moving metallic structure of the machine, and thereby observe various magnetic intensities when
exercising, as annotated in Figure 19. The device’s orientation and z-height above the ground are kept the same
as the case at the handle. The results are promising. Only the locations close enough to the legitimate location
(the handle) produce correct classifications; the classifier does not produce false-positive labels at other locations,
including those closer to the machine and/or observing stronger magnetic disturbances. Overall, ProxiFit exhibits
robustness from interference even between machines abnormally close below the regulated minimum.
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Fig. 22. Sample density maps showing robustness against various user physiques and exercise paces

9.6.2 Long-term aging of intrinsic magnetism. To suppress the operational cost, the once-trained magnetic
patterns should remain valid as long as possible. To evaluate ProxiFit’s possible ‘aging’ effects, we sampled two
dates from D;: one on Aug. 22, 2021, and the other on Feb. 27, 2022. We trained a model with a single person’s
data in the former and tested it on different users’ data in the latter. Repeating over 8 distinct single-person
trained models gives an average of 97.1% accuracy. This result supports the longitudinal stability of the magnetic
signature, for at least a 6-month span.

9.6.3 Robustness against weather-borne variations. It is known that weather factors may influence ambient
magnetic fields [52]. We backtracked the past weather on the dates of data collection. Figure 21a through 21c
show the density plots of the accuracy along the range of weather conditions—temperature, humidity, and number
of lightning per day, respectively, at the time of experiments. Figure 21c has few samples as lightning struck
on few days. In all weather variables, most samples exhibit near-top accuracies; no significant influence on the
accuracy is observed.

9.6.4 Robustness against user-dependent variations. Figure 22a through 22c¢ show the density plots of the accuracy
along the users’ body height, favorite lifting weight, and favorite repetition pace, respectively. For example, the
x-axis of Figure 22a represents the body height differences between the (single-person) trained user and the
tested users. In all variables, most samples exhibit near-top accuracies. Note that the samples may look skewed as
we let the users freely choose a favorite weight and pace. The uneven x-axis distribution in Figure 22b and 22c
reflect their natural choices.

9.6.5 Robustness against spatial displacement. For free-weight exercises in signage mode, recall §9.2 that the
users freely positioned the phone along the horizontal (H), vertical (V), and distance (D) axes, for comfortable
viewing. We found that the user-positioned phone locations fall in a 3-D box of H X V X D = 20 X 20 X 20
cm?®. Given this observation, we mimic the phone’s likely displacements to six off-center positions, as shown in
Figure 23a along with the resulting accuracy. We assess that ProxiFit is robust within the range enclosing the
user-chosen displacements observed in §9.2.
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Table 5. Biceps-curl classification: accuracy remains unaffected even with dumbbells changed.

Dumbbell dl dz d3
Wearable mode accuracy (%) | 100 | 100 | 100
Signage mode accuracy (%) | 100 | 100 | 100

In case of signage mode, users may slightly adjust the phone holder for individually best viewing experiences.
We displaced the phone vertically by [+10, -10] cm and tilted by [+30°, -30°] range as illustrated in Figure 23b.
Vertical displacement is fundamentally identical to Figure 23a, reproducing the same robust results. However,
tilting smartphones renders the ambient magnetic field vectors to be largely rotated. Our signage mode omitted
the frame normalizer as we assumed a fixed phone holder. Now relaxing the assumption and enabling again the
frame normalizer to signage, ProxiFit achieved an average accuracy of 99.4% under the tilt over [+30°, -30°] range,
as shown in Figure 23c.

9.6.6 Different dumbbells in free-weight. Unlike machine exercises, free-weights are not bound to a specific
weight instance. Would ProxiFit keep stable classification with different dumbbells whose spontaneous magnetism
may differ? We trained the classifier for a dumbbell dj and tested it upon 3 different dumbbells: d;, dz, ds. Table 5
list the accuracy when the users performed biceps curl in the wearable mode and in the signage mode, respectively.
Each mode employed a full-fledged classifier that classifies every exercise of the S-Exercise family in the respective
mode.

9.7 Power Consumption of System

ProxiFit is designed to run in the background throughout a user’s gym routine; a gym routine may last for 1-2
hours, and thus the runtime battery consumption matters. To run autonomously free of user intervention, the
workout detector runs for the entire gym routine, selectively triggering the exercise classifier and the repetition
counter upon detection. It is reported that real-usage traces are crucial to fairly assess the battery consumption
of continuous background sensing services [70, 94-97]. We measure the battery consumption along a 1-hour
natural gym routine which contains a total of 25 minutes of net exercise time.

Figure 24 shows that ProxiFit drained the Apple Watch’s battery only by 7%, compared to 3% drop at idle. This
is attributable to the lightweight early rejection. To verify this, we run two ablations for an hour where one only
runs sensor data collection and early rejection (i.e. no classification or repetition counting) and the other runs the
entire pipeline all the time (i.e. no early rejection). The result shows early rejection drained the battery by 4%,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 105. Publication date: September 2023.



ProxiFit: Proximity Magnetic Sensing Using a Single Commodity Mobile toward Holistic Weight Exercise Monitoring « 105:25

‘ —> Control Path -‘* --- Data Path
Magnetometer

T Principle Support

1? Accel, Gyro ; Component Vector = type EXERCISE
R . Analysis Machine CLASSIFIER
1 . 1
:@ Wearable | @
[P i

Decision Tree Continuous | o\ ictic REPETITION
..... Wavelet titi
ar=n WORKOUT ) Tra:‘slfeufm Peak Counter =) repetitions COUNTER

M-ProxiFit e

Fig. 25. M-ProxiFit architecture, which is a trimmed-down version of the original ProxiFit architecture.

-100%

-100% ki
@o.o 0.0 0.0 0.0 3.1 S
(7]
X
B3 0.0 Y 0.0 0.0 0.0 0.0 & -80%
-80% < :
I 0.0 0.0 0.0 0.0 0.0 00 3 =
— (1)
S e 0.0 fldY 0.0 0.0 0.0 0.0 0. 60% " 60%
© =
— o
¥ 0.0 0.0 0.0 0.0 fIIg 0.0 0.0 3
T =y 40%
= 0
(VI 0.0 0.0 0.0 0.0 0.0 Y 0.0 0.0 0. 40% 0
< < g
B2 0.0 0.0 0.0 0.0 0.0 0.0 Y 0.0 g 20%
B9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Y o0 [ A o
=
™ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. . : , 0%
M Uo U ©Y| 0| 0| 0O) 1w 0% Non-Exercise S-Exercise M-Exercise °
SCP SP LPD BT AB BS BP BC-MTKM ° Predlcted Label
Predicted Label
Fig. 26. M-ProxiFit M-Exercise classifications (99.7%) Fig. 27. M-ProxiFit workout detection (93.8%)

which is only 1% more than being idle. On the other hand, running the whole pipeline without early rejection
consumed 15% battery.

10  M-PROXIFIT: EXTENDING PROXIFIT TO S-EXERCISES

Until now, we mainly focused on new possibilities, i.e., S-Exercises, that ProxiFit can bring by proximity sensing.
But ProxiFit is not limited to stationary-device scenarios. In principle, magnetometer readings can change if
either (a) the surrounding magnetic field changes, (b) the sensor itself travels through varying environmental
fields, or (c) both (a) and (b). Obviously, S-Exercises correspond to the case of (a), while M-Exercises correspond
to (b) or (c).

To explore the latter potential of sensing M-Exercises magnetically instead of using traditional IMUs, we
developed M-ProxiFit, a minor variant of ProxiFit retrofitted for M-Exercises, which co-exists with the original
ProxiFit and replaces the role of MiLift taking care of processing M-Exercises. Figure 25 shows the architecture
of M-ProxiFit. The changes from the original ProxiFit are mainly two-fold. First, the frame normalizer is omitted
to preserve rotational information. Second, the workout detector is replaced with a simple decision tree based on
autocorrelation and power.

We test a new implementation where ProxiFit detects S-Exercises and M-ProxiFit detects M-Exercises. Fig-
ure 26 presents its accuracy (99.7%) tested on 91, which outperforms IMU-based MiLift (94.2%) seen in Figure 14.
Segmentation performance is also shown in Figure 27. Figure 28 visualizes segmentation results of along continu-
ous gym routines. For repetition counting, evaluation on M-Exercises in D; reports an average error of 0.38 rep
per 10-rep session.
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11 DISCUSSION

Augmentation using magnets. Inspired from magnetic instrumentation [26, 33, 61], ProxiFit may augment a
machine’s natural magnetism by attaching a small magnet, preferably on a moving part quite far away from the
user. It may, however, bring the side-effect of increased interference to nearby machines.

Miscellaneous clarifications. While most weight machines come with a built-in weight stack, a few machines
such as the leg press (LP) in D; accept external weight discs whose magnetic signature would be diverse.
Fortunately, our experiments support that their magnetic disturbance patterns are rather stable. We believe that
the machine’s moving frame (where discs are hung; much heavier than the discs) dominates the total weight
disturbances.

Malicious magnetic attack. Ferromagnetic materials has remanence - a residual magnetism after exposure to
an extreme external magnetic field (e.g., 1.0 T) [28]. Although it is an MRI-grade strength, some experimental
magnets are so strong; a malicious user might bring one to alter a machine’s magnetic pattern, yet it is unlikely
in practice.

12 CONCLUSION

We presented ProxiFit, a novel proximity magnetic monitoring system supporting most weight exercise categories
frequently performed at gyms: lower-body machines, upper-body machines, and free-weight. ProxiFit leverages
the intrinsic magnetism of weight equipment. ProxiFit uses only a single commodity mobile device that most
users already own, i.e., either a smartphone or a smartwatch, and does not require any instrumentation on the
equipment or the gym space. ProxiFit brings two unprecedented features to commodity COTS device-based
weight exercise tracking: (1) its wearable mode newly supports previously unsupported weight exercise categories
while ensuring the natural way to wear that device; (2) it features the new signage mode, enabling rich user-device
visual interaction while the exercises are being tracked in the background. We developed a prototype of ProxiFit
on iPhone 12 Pro and Apple Watch Series 6. We addressed the unique signals and learning challenges, and verified
its performance and usability along with natural end-to-end gym routines as well as against diverse reality factors
expected in real, longitudinal deployment.
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