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Figure 1: Demonstration of ProxiFit monitoring exercises in real-world gyms. ProxiFit can either be deployed in wearable mode
(left) or in signage mode (right). Both modes deliver pervasive exercise classification and repetition counting. For wearable
mode, either a smartwatch or a smartphone is worn on the user’s wrist. For signage mode, a smartphone is mounted to the
holder in front of the user with line-of-sight visibility.

ABSTRACT
Although many works bring exercise monitoring to smartphones
and smartwatches, inertial sensors used in such systems require the
device to be in motion to detect exercises. We demonstrate our full
paper ProxiFit, a practical on-device exercise monitoring system
capable of classifying and counting exercises despite the device
being still. ProxiFit remotely detects adjacent exercises with mag-
netic field fluctuations induced by the motions of ferrous exercise
equipment. Novel proximal sensing nature of ProxiFit (1) extends
coverage of wearable exercise monitoring to exercises that do not
involve device motion such as lower-body machine exercise, and (2)
brings a new off-body exercise monitoring mode with line-of-sight
∗Co-corresponding authors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UbiComp/ISWC ’23 Adjunct , October 8–12, 2023, Cancun, Quintana Roo, Mexico
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0200-6/23/10.
https://doi.org/10.1145/3594739.3610710

screen visibility, namely signage mode, to a smartphone mounted
in front of the user.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; In-
teractive systems and tools; • Hardware→ Sensor applications
and deployments.
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1 INTRODUCTION
Prior researches report that manual logging of health data is burden-
some [1] and thus pervasive fitness tracking should be adopted [35,
50], and gym-goers’ preference are in line with the claim [2, 52, 53].
Extensive efforts have been put into the pervasive tracking of gym
exercises. Among various approaches, systems based on personal
commodity mobile/wearable such as smartphones or smartwatches
have unique merits of zero hardware investment, gym-independent
applicability, and keeping gym-goers’ privacy from third-parties.

However, the main sensing modality of exercise monitoring
systems on commodity mobile/wearable is inertial features from
accelerometer and gyroscope [14, 15, 33, 34, 46], which requires the
device to be in motion to detect exercises. This limitation prevents
monitoring exercises that do not involve device motion, such as
lower-bodymachine exercises and free-weight exercises on the non-
device-worn arm. In addition, smartphones lose screen visibility,
which is their main interface, as they must be put in motion by
being worn on the user’s body to monitor exercises.

We present ProxiFit, a practical on-device exercise monitoring
system capable of classifying and counting exercises without the
motion of the device itself. Unlike prior works that use inertial fea-
tures, ProxiFit exploits the built-in magnetometer of smartwatches
and smartphones to enable proximity sensing of exercise equip-
ment.

Weight exercise equipment is often made of ferrous metal, and
thus have faint self-magnetism. When the equipment is in mo-
tion, its self-magnetism influences the surrounding magnetic field.
However, the magnetic disturbances around unmagnetized iron
are extremely weak [12, 37], and the magnetic signature of each
piece of equipment is determined at its annealing process [5, 13, 17].
These constraints mandate a robust yet data-efficient classifier as
the model should be trained per-instance manner. ProxiFit devises
a simple yet efficient classifier that overcomes both constraints to
successfully detect, classify, and count adjacent exercises remotely.

With new proximity magnetic sensing modality, ProxiFit imple-
ments two modes, namely wearable and signage modes.Wearable
mode targets wrist-worn wearables such as a smartwatch, where
ProxiFit newly brings the capabilities to monitor a new category
of exercises without device motion such as lower-body machine
exercises or free-weight exercises done on the non-device-worn
arm. Signage mode is a new off-body exercise monitoring setup for
smartphones featuring line-of-sight screen visibility, where a smart-
phone is mounted in front of the user during exercise. The user
may watch a video player or a self-monitoring & guidance app [32].
Both modes provide real-time exercise classification and repetition
counting via auditory feedback [27, 28, 49]. Refer to Figure 1 for
the real-world demonstration of ProxiFit in both modes.

2 RELATEDWORKS

Exercise monitoring on mobile. There have been other ap-
proaches to overcome coverage limitations of inertial exercise mon-
itoring on commodity mobile devices.

A most straightforward approach is to introduce more devices so
that they can sense the inertial movements of different limbs [7, 25,
42, 56] or even dumbbells [49, 53] and various equipment [26, 45, 47].
While this is the most intuitive solution, it requires users to buy
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Figure 2: Exemplary trajectories and their primary compo-
nent vectors of hip abduction repetitions. There exist notice-
able drift and deviation between repetitions. However, the
primary component vector of each repetition is consistent.

and wear extra devices. Detachable smartwatch [29] avoids the
burden of equipping extra devices by allowing the smartwatch to
be relocated on-demand. However, it poses practicality concerns
where users need to frequently change the device position during
workouts.

Fu et al. [20, 21] suggests acoustic Doppler sensing to detect
nearby activities. While it is capable of detecting exercise without
device motion, susceptibility to multi-paths and ambient noise in
crowded gyms would limit its deployment [55].

Bian et al. [6] proposes a wearable capacitive coupling sensor
to detect the motions of body parts apart from the limb where
the sensor is worn. However, such a sensor is not yet available on
commodity mobile devices, and its accuracy needs refinement for
practical deployment.

Magnetic sensing. Ambient magnetic field sensing based on a
commodity mobile device has been studied for real-life problems,
e.g., indoor localization [3, 16, 18, 19, 38, 48, 51, 54], NFC [43], and
daily hygiene [24]. Other side of works track magnetic fields to
discover cyber-physical vulnerabilities [12, 37], driver monitor-
ing [23], natural user interfaces [4, 8–10, 22, 39–41, 44], and mode
of transport [11].

ProxiFit is the first exercise monitoring system that satisfies the fol-
lowing constraints towards high practicality; (1) supports exercises
without device motion, (2) only requires a single commercial off-
the-shelf (COTS) smartwatch or smartphone, (3) preserves intended
use of the device (i.e., the smartwatch is worn on wrist/smartphone
screen is visible to the user), and (4) assumes no external instru-
mentation.

3 METHODS
Following is a brief description of ProxiFit architecture. Further
details can be found in the full paper [30].

While magnetic sensing enables detecting exercise equipment
without device motion, its faint signal poses a challenge for accurate
exercise classification and repetition counting. Signal-to-noise ratio
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Figure 3: Exercises tested on each mode of ProxiFit.

measurements on 6 classes of equipment range from 2.5 to 15.3
dB. Extracting useful information from such noisy magnetic field
signals requires careful feature crafting based on the characteristics
of weight exercises – repetitive motion and consistent directionality
of motion.

Figure 2 represents five continuous repetitions of the hip abduc-
tion exercise. Even though each repetition is executed right after
one another, there exist prominent drift and deviations between
repetitions. Therefore, bespoke methods are to be devised to ensure
robustness.

3.1 Sampling Data
ProxiFit collects accelerometer, gyroscope, and magnetometer data
at 100 Hz. IMUs (i.e., accelerometer and gyroscope) are solely used
for efficient exercise detection and frame normalization, while exer-
cise classification and counting are performed with magnetometer
data. Data is bundled into 3-second windows with 2.5-second over-
lap to contain at least a single repetition of exercise without too
much processing delay.

3.2 Exercise Detection
We employ a light-weight exercise detector in favor of efficiency.
The detector adopts low-acceleration thresholding to find wear-
able mode exercises, based on the observation that a user’s wrist
is unnaturally still during target exercises. For signage mode, au-
tocorrelation is alternatively used to detect the periodic motion of
exercise equipment.

3.3 Frame Normalization
In wearable mode, the orientation of the device varies by users’
physiques, how users wear the device, and slight instance-wise dif-
ferences in grips to hold exercise equipment. The frame normalizer
negates such rotational deviations by transforming each sample
according to its frame of reference.

3.4 Exercise Classification
The wearable and signage modes both utilize the same classifier
architecture, as the fundamental concept of magnetic sensing is
applicable to both modes. We handcrafted the features by carefully
observing the magnetic trajectories of repeated exercises. Despite
the trajectories represented in Figure 2 appearing erratic, we ob-
serve that the primary component vector of the magnetic trace is
consistent for each repetition, as illustrated by the arrows. There-
fore, we apply principal component analysis to extract the primary
component vector of the given window. Features are then heuristi-
cally constructed with the primary component vector of the raw
signal, which is then fed into a support vector machine (SVM) for
classification. Due to the instance-specific nature of each weight
machine’s magnetic signature, we train a separate model for each
gym. Loading the model for the current gym is straightforwardly
done by PoI-level localization techniques [31, 36].

3.5 Repetition Counting
Exercise monitoring systems often look for peaks on the target
signal to count repetitions. However, naïve peak counting is not
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(b) Peak counting results alongside varying scales of CWT

Figure 4: Visualization of continuous wavelet transform and
ProxiFit’s automatic scale finding algorithm

applicable to magnetic sensing due to the noisy nature of the mag-
netic field. Instead, continuous wavelet transform (CWT) is applied
to better extract periodic features. Figure 4 showcases the result
of the continuous wavelet transform. To count repetitions, peak
counting is applied alongside a horizontal line (or a scale) of CWT.
Figure 4b plots each line and its peaks on three scales, which are
also annotated as arrows in Figure 4a.

Despite observable periodicity, noise introduces false peaks on
the 1.25 Hz and 1.5 Hz scales. ProxiFit automatically counts peaks
alongside multiple scales and chooses the one with the least interval
variance between peaks, which is 1.75 Hz in this case.

4 EVALUATION
ProxiFit is tested on both wearable and signage modes for exercise
classification and repetition counting. Figure 3 shows exercises that
ProxiFit is tested on. Note that, exercises both with and without
device motion are tested for wearable mode.

We test the end-to-end performance of wearable mode ProxiFit
under a real-life gym workout scenario. MiLift [52], an IMU-based
exercise monitoring system, is integrated to support exercises with
device motion, as a realistic exercise routine would include both cat-
egories of exercises. Subjects are asked to freely perform workouts
in a gym with ProxiFit running on a wrist-worn smartphone, mim-
icking a smartwatch. In 11.6 hours of end-to-end sessions, ProxiFit
achieved 93.1% classification accuracy as seen in Figure 5, with an
average counting error of 0.77 reps per 10-rep session.

We also test classification and repetition counting accuracy in
signage mode. Average classification accuracy was 97.7% when left
and right arm free weights are seen as discrete exercise classes, and
was 100% under side-agnostic evaluation. The average counting
error was 0.69 reps per 10-rep session.

ProxiFit is also tested against longitudinal aging, displacement,
interference from adjacent machines, weather variances, and user

𝑆 − 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 (ProxiFit) (95.1%)

𝑀 − 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 (MiLift) (94.2%)

Figure 5: Confusionmatrix of end-to-end evaluation onwear-
able mode ProxiFit. MiLift is integrated to cover exercises
that involve device motion. (Average accuracy 93.1%)

diversity. There was no significant impact on accuracy. For more
information, please refer to the full paper [30].

5 DEMONSTRATION
ProxiFit employs both wearable and signage modes, which of each
supports both machine exercises and free-weight exercises. At the
demo venue, we will showcase the signage mode as it allows users
to quickly participate without wearing/taking off a device. Also, we
focus on free-weight exercises, as such exercises involve portable
equipment that can be brought to the demonstration venue.

We will prepare free-weight exercise equipment and install an
iPhone running signage mode of ProxiFit on a holder. Participants
can come by to pick up a dumbbell and perform simple weight exer-
cises in front of it. ProxiFit will automatically detect ongoing exer-
cise and count repetitions. While the main work of ProxiFit includes
two dumbbell exercises, the demonstration variant of ProxiFit is
tailored towards demo-friendly free-weight exercises including, but
not limited to, biceps curl and other dumbbell exercises that can be
performed while standing, along with kettlebell exercises.
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